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ABSTRACT 
We present an experimental investigation of tabu search (TS) to solve the 3-coloring problem 
(3-COL). Computational results reveal that a basic TS algorithm is able to find proper 3-
colorings for random 3-colorable graphs with up to 11 000 vertices and beyond when 
instances follow the uniform or equipartite well-known models, and up to 1 500 vertices for 
the hardest class of flat graphs. This study also validates and reinforces some existing phase 
transition thresholds for 3-COL. 
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1. INTRODUCTION 
Given a simple undirected graph G = (V(G), E(G)), where V(G) = {v1, v2, …, vn} is a set of n vertices 
(n is usually called the “order” of G) and E(G) ⊂ V(G) × V(G) a set of m edges, and a set C = {c1, c2, 
…, ck} of k colors, a k-coloring of G is any assignment of one of the k available colors from C to every 
vertex in V(G). More formally, a k-coloring of G is a mapping c : V(G) → C. The k-coloring problem 
(k-COL) is to find such a mapping (or prove that none exists) such that adjacent vertices receive 
different colors (called “proper” k-coloring). More formally, a proper k-coloring of G verifies {vi, 
vj} ∈ E(G) → c(vi) ≠ c(vj). The tightly related optimization version of k-COL is the graph coloring 
problem (COL): Determine a proper k-coloring of G with k minimum, i.e. the chromatic number χ(G). 

 
k-COL is known to be NP-complete when k ≥ 3 for general graphs (Garey & Johnson, 1979; Karp, 

1972). It remains NP-complete even for particular classes of graphs, including, for instance, triangle-
free graphs with maximum degree 4 (Maffray & Preissmann, 1996). Classes of graphs for which 3-
COL can be decided in polynomial time are discussed, for instance, in (Alekseev et al., 2007; Kochol 
et al., 2003). 

 
Another way to express the difficulty of a combinatorial search problem is to consider the phase 

transition phenomenon which refers to the “easy-hard-easy” transition regions where a problem goes 
from easy to hard, and conversely (Cheeseman et al., 1991; Dubois et al., 2001; Gent et al., 1996; 
Hartmann & Weigt, 2005; Hogg et al., 1996; Monasson et al., 1999), see also (Barbosa & Ferreira, 
2004; Krzakała et al., 2004; Zdeborová & Krzakała, 2007) for k-COL. Various phase transition 
                                                 
* Corresponding author. 
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thresholds (noted τ hereafter) have been identified for some classes of random graphs. For 3-COL, τ 
seems to occur when the edge probability p is such that 2pn/3 ≈ 16/3 according to Petford & Welsh 
(1989) (referred as τw in the rest of the paper), when the mean connection degree 2m/n ≈ 5.4 (τc from 
Cheeseman et al. (1991)), when 7/n ≤ p ≤ 8/n (τh from Eiben, van der Hauw, & van Hemert (1998)), 
when 2m/n ≈ 4.6 (τg from Culberson & Gent (2001)), or when p ≈ 3/n + 3(n - 3)(1 – 1/62/n)/2n (τe from 
Erben (2001)). Note that τe and τw are similar to the upper bound of τh (8/n). τc and τg are also similar 
but τc holds only for graphs that are first transformed (before solving) using three “particular reduction 
operators” (Cheeseman et al., 1991). Additionally, τe was characterized just for equipartite graphs and 
τw only for equipartite and uniform graphs (the construction of such graphs is described in Sect. 0). 
Henceforth, we use the terminology outside of τh (or τc or τg, etc.) to indicate parameter values outside 
of the indicated τ setting. 

 
This paper focuses on an experimental study of finding solution for 3-colorable random graphs 

around and outside of phase transitions. We are particularly interested in two questions. First, are 
graphs around phase transitions really difficult to color from a practical solution point of view? 
Effectively, the different thresholds for phase transition have been established either theoretically or 
empirically. In both cases, it would be interesting to verify these thresholds by large scale 
computational experimentation. Notice that, except (Eiben et al., 1998), most experimental studies 
(see e.g. (Cheeseman et al., 1991; Hogg et al., 1996)) are based only on systematic backtracking 
search algorithms and small graphs (with no more than 200 vertices). Little is known about the 
behavior of a (metaheuristic-based) search algorithm on solving large and very large 3-colorable 
graphs. 

 
Closely related to this first question is another interesting point: Given the phase transition 

phenomenon, what are the largest sizes of the graphs that can be colored in practice? Actually, the 
phase transition thresholds distinguish the relative hardness of instances around and outside of the 
thresholds. They don’t tell much about whether such instances can be solved easily with a practical 
solution algorithm (such as tabu search) and for which problem sizes a solution is possible. 

 
In this study, we aim to investigate these issues by studying a large range of random graphs 

generated according to three well-known distributions: Uniform, equipartite, and flat (see next section 
for more details). For the solution algorithm, we employ a simple tabu search (TS) algorithm (Glover 
& Laguna, 1997) which can be considered as a baseline reference for the class of metaheuristic (k-) 
coloring algorithms. 

 
We report computational results on graphs with up to 11 000 vertices, leading to two main 

findings. First, the variation of solution difficulty of random graphs around and outside of phase 
transition thresholds are clearly confirmed throughout the experiments: Graphs around the phase 
transition thresholds are actually more difficult to color than those outside of the thresholds. Second, 
for the three classes of graphs (uniform, equipartie and flat), the TS algorithm is able to find solutions 
for graphs with up to at least 11 000 vertices if the graphs are outside of the phase transitions. For 
graphs around the phase transitions, the TS algorithm always manages to find solutions for uniform 
and equipartie graphs with up to at least 11 000 vertices, but for flat graphs, the performance seems 
limited to graphs of 1 500 vertices. 

 
The next section presents the three classes of 3-colorable random graphs studied in this paper. The 

TS 3-coloring algorithm is described in Sect. 3. Computational results are given in Sect. 4 before 
concluding. 
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2. RANDOM GRAPHS 
While many classes of random graphs exist (Bollobás, 2001; Krivelevich & Sudakov, 2006), we focus 
our study on three well-known classes of 3-colorable graphs: Uniform, equipartite, and flat. 

 
There are several reasons for this choice. These random graphs have been object of a number of 

theoretical (and sometimes practical) studies and analyses, see e.g. (Bollobás, 2001; Braunstein et al., 
2003; Culberson & Gent, 2001; Erben, 2001; Fleurent & Ferland, 1996a; Krzakała et al., 2004; 
Zdeborová & Krzakała, 2007). There is a publicly available generator from http://web.cs. 
ualberta.ca/~joe/Coloring/Generators/generate.html (newer version). The work 
reported in (Eiben et al., 1998), the only paper that we are aware of on practical solution of the 3-
coloring problem, is based on random graphs generated by the same generator, making it possible to 
use the results of Eiben et al. (1998) as a reference for reporting the 3-coloring results of our TS 
algorithm. 

 
Uniform. Vertices are first randomly assigned to one of the 3 colors uniformly and independently. 

Then, each edge {vi, vj} verifying c(vi) ≠ c(vj) appears with probability p. We will refer to these 
graphs with the Un,p notation (or U, for short). Specify 3 at “K-coloring schemes”, 3 at “partition 
number”, 0 at “variability”, and 1 at “graph type” prompts when running the generator. 

 
Equipartite. In En,p graphs, V(G) is first split into 3 subsets Vci ∈ C

 (C = {c1, c2, c3} since k = 3) such 
that |Vci| = ⎣n/3⎦ or |Vci| = ⎡n/3⎤ ∀ ci ∈ C (i.e. all Vci are nearly equal in size, the smallest subset 
having one less member than the largest), vj∈Vci meaning c(vj) = ci. Then, edges appear as in U 
graphs. Specify 2 at “K-coloring schemes”, 3 at “partition number”, and 1 at “graph type” 
prompts. 

 
Flat. Based on E graphs, the Fn,p graphs have an additional property related to the variation of the 

expected degree of the vertices. Specify 6 at “K-coloring schemes”, 3 at “partition number”, 
and 0 at “flatness” prompts. 

3. TC: A TABU SEARCH ALGORITHM FOR 3-COL 
In this section, we describe the components and overall scheme of our tabu search 3-coloring 
algorithm (called TC) used for our 3-COL experiments. TC is an application to 3-COL of the TS 
metaheuristic (Glover & Laguna, 1997). Its implementation is based on the TS (k-)coloring algorithms 
given in (Dorne & Hao, 1998; Fleurent & Ferland, 1996a), which themselves are improved variants of 
TABUCOL, the first TS algorithm for general (k-)COL introduced in (Hertz & de Werra, 1987)1. 

 
Starting state. The well known greedy DSATUR algorithm (Brélaz, 1979) is used to build a starting 

3-coloring (proper or not) while restricting the number of available colors to 3. Vertices that 
cannot be assigned any of the 3 colors without generating conflicts are (temporarily) removed 
from the graph with their incident edges. After running DSATUR, these free vertices are finally 
randomly assigned one of the 3 authorized colors. 

 
Fitness function. Let C be the set of all 3-colorings (proper or not) of G and Ẽ(c) be the set of 

conflicting edges (i.e. with endpoints colored the same) of c ∈ C : Ẽ(c) = {{vi, vj} ∈ E(G) : 
c(vi) = c(vj)}. Any 3-coloring c is evaluated according to the following fitness function to be 
minimized: f(c) = |Ẽ(c)| (f : C → {0, 1, …, m}). Note that c is a proper 3-coloring if f(c) = 0. 

                                                 
1 A C++ source code implementing TABUCOL is available e.g. from www.imada.sdu.dk/~marco/gcp-
study. 
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Move operator. A move m maps a 3-coloring c to another 3-coloring c’ (i.e. m : C → C) by changing 
the color of exactly one vertex vj to c’(vj) ≠ c(vj), noted c’ = mc(vj, c’(vj)). Let M(c) be the set of 
all potential moves available from c: M(c) = {(vj, c’(vj)) : c’(vj) ≠ c(vj)}. 

 
Neighborhood. The set of 3-colorings c’ reachable from c by applying all potential moves defines the 

neighborhood N(c) of c. More formally, N(c) = {c’ = mc(vj, c’(vj)) : (vj, c’(vj)) ∈ M(c)}. 
 
Tabu list. When a move m is performed from a 3-coloring c to c’ ∈ N(c), the reverse move 

( )( ) cvcvm jjc =− ,1
' (i.e. assigning to vj its previous color) is “tabu” (forbidden) for the next 

( ) ( ) ( ) ( ){ }γα randcVcfkTT +−= ~,1min  iterations2, where α is a TC parameter, rand(γ) is a 

random integer from {1, 2, …, γ} (the role of γ is just to introduce a few stochastic noise), and 
)()(~ GVcV ⊆ is the set of conflicting vertices of c ( )(~ cV = {vi : {vi, vj} ∈ E(G) → c’(vi) = 

c(vj)}). 
 
Stopping criterion. TC halts whenever f(c) = 0 (a proper 3-coloring c has been found) or after a 

maximum allowed number of moves. 
 

Given the previous components of TC, the core procedure (see the subsequent algorithm) searches 
for a 3-coloring c* ∈ C (proper or not) with a minimum number of conflicting edges (with f(c*) = 0 
ideally, meaning that TC halts since it has found a proper 3-coloring c*). To do so, TC iteratively 
moves from a 3-coloring c ∈ C to a c’ ∈ N(c). Let M*(c) ⊂ M(c) be the set of best moves (according 
to f) available from c and involving a conflicting vertex such that, ∀ m ∈ M*(c), m is not tabu or m 
leads to a neighbor better than the best 3-coloring c* found so far (aspiration criterion). If M*(c) ≠ ∅, 
m is chosen at random from M*(c) according to some probability π. Otherwise, i.e. with probability 1 - 
π or when M*(c) = ∅, m is chosen at random from M(c). Note that c* is updated each time f(c’) < 
f(c*). 

 
TC ALGORITHM. 
Require: A 3-colorable graph G = (V(G), E(G)) and a set C = {c1, c2, c3} of three colors 
Require: A starting 3-coloring c ∈ C of G // Proper or not 
1. c* ← c // Best 3-coloring found so far 
2. TL(j, i) ← 0 ∀ (vj, ci) ∈ V(G) × C // Make the tabu list TL empty 
3. µ ← 0 // Current number of moves 
4. while stopping criterion not met do 
5. µ ← µ + 1 
6. Let M(c) = {(vj, c’(vj)) : c’ ∈ N(c)} 
7. Let M*(c) = {(vj, c’(vj)) ∈ M(c) : 

 vj ∈ )(~ cV  and ∀ (vl, c’’(vl)) ∈ M(c), f(c’) ≤ f(c’’) and (TL(j, c’(vj)) < µ or f(c’) < f(c*))} 
8. Let r be a random real number in [0, 1] 
9. if M*(c) = ∅ or r > π then 
10.   Randomly select a move (vj, c’(vj)) from M(c) 
11. else 
12.   Randomly select a move (vj, c’(vj)) ∈ M*(c) 
13. TL(j, c(vj)) ← µ + TT // Forbid the reverse move m-1 at least up to iterations µ + TT 
14. c(vj) ← c’(vj) // Do the selected move 
15. if f(c) < f(c*) then 
16.   c* ← c 
17. return c* 

                                                 
2 TT is called the “tabu tenure”. We used the same dynamic TT formula than that in (Dorne & Hao, 1998) since 
this approach achieved effective results. 
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Note that selecting (lines 10 and 12 in the TC algorithm) or doing (line 14) a move in TC can be 
achieved efficiently, i.e. within small time complexity, using a particular data structure inspired by a 
technique from Fleurent & Ferland (1996b) and usually called “δ table” in the wide tabu search 
literature. Basically, δ is a n × k matrix where δc(j, c’(vj)) stores the fitness variation (between c ∈ C 
and c’ ∈ N(c)) when the color assigned to vj ∈ V(G) changes from c(vj) to c’(vj): δc(j, c’(vj)) = f(c’) - 
f(c). δ is initialized once at the beginning of the search (before line 4, in time O(nk)) and updated each 
time a move is performed (after line 14, in time O(nk) in the worst case but, in practice, only a subset 
of δ is updated). While selecting a move from the M(c) set (line 10) takes O(1) time, the evaluation of 
all “best” moves from the M*(c) set (line 12) is almost incremental: It can be achieved in O(| )(~ cV |k) 
time in the worst case thanks to δ. Thus, each iteration takes O(2nk) time at most since | )(~ cV | ≤ n for 
any 3-coloring c. 

4. COMPUTATIONAL RESULTS 
The computational experiments reported in Secs. 4.1–4.5 are based on the following general protocol. 
 
Benchmark set. A collection consisting of 263 different instances is built according to Sect. 0. Recall 

that all these graphs are 3-colorable by construction. Their order ranges from 200 to 11 000. 
Note that the generator requires an integer seed for randomization initialization: We always use 
5 as in (Eiben et al., 1998) to deal exactly with the same instances. Additionally, Eiben et al. 
(1998) noted that this parameter seems to have no great influence on results. 

 
Reference algorithm. For reporting computational results of TC, we use the SAW evolutionary 

algorithm (Eiben et al., 1998) as a reference. Indeed, according to Eiben et al. (1998), SAW is 
effective in 3-coloring random 3-colorable graphs of large order (up to 1 500 vertices). 
Moreover, the authors clearly describe the graph generator employed and the seed for 
randomization initializations, making it possible to make direct comparisons. In all our tables 
shown later in the paper, “–” signals unavailable or inapplicable entries and results reported for 
SAW are approximated from figures in (Eiben et al., 1998). No information is given for SAW in 
some of our tables since it cannot be retrieved from (Eiben et al., 1998). 

 
Performance criteria. The solution performance is assessed according to the well-known “Success 

Rate” measure (SR): It is the percentage of successful runs, i.e. in which a proper 3-coloring is 
found, over a given number of runs. To give an idea of the TC computational effort, we also 
report the mean number of moves required by TC to find a proper 3-coloring (AMS, for 
“Average number of Moves to Solution”) and its standard deviation (σAMS). Eiben et al. (1998) 
used a slightly different measure, namely the mean number of fitness evaluations (AES, for 
“Average number of Evaluations to Solution”). Note that AMS and AES are implementation and 
hardware independent measures. The mean computation time T and its standard deviation σT (in 
seconds) are also reported for successful runs of TC. 

 
Phase transition. In some tables, the cases the closest to τc, τe, τg, τh, and τw are identified with the 

appropriate “c”, “e”, “g”, “h”, and “w” letters in the τ columns. The bold entries in Tables 1–9 
(Sect. 4.1) and Tables 10–18 (Sect. 4.2) indicates which τ is the closest to the hardest cases 
(minimum SR, or maximum AMS or AES), i.e. it suggests which τ seems to be best suited to 
locate the phase transition. 

 
Implementation. Our TC algorithm is coded in the C programming language (“gcc” compiler). All TC 

computational results were obtained on a Sun Fire V880 server with 8 Gb RAM (UltraSPARC 
III CPU 750 MHz). 
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The values of the main TC parameters were empirically determined during a few preliminary 
computational experiments (not shown here): α = 0.5, γ = 2, and k = 3 (to compute the tabu 
tenure TT), and π = 0.85 (probability to select a move in M*). 

4.1. Influence of the Edge Probability p on the Problem Difficulty 

Almost similarly to Eiben et al. (1998), we first limit the maximum allowed number of moves of the 
TC algorithm to 300 000 and vary p from 0.015 to 0.075 for n = 200 (step 0.005, 100 runs per p value 
and per graph, a total of 39 graphs), 0.006 to 0.05 for n = 500 (step 0.004, 50 runs, 36 instances), and 
0.002 to 0.026 for n = 1 000 (step 0.002, 25 runs, 45 graphs). Note that three instances were generated 
per p value since we consider three types of graphs (U, E, and F). Results are reported in Tables 1–9 
where the two lines associated with τ (between the two dashed lines) correspond to graphs around (i.e. 
the closest to) the indicated phase transition thresholds while the other lines concern graphs outside of 
(i.e. more distant from) these thresholds. 
 

On the set of small-order instances (n = 200, see Tables 1–3), TC always succeeds in all runs (SR 
is always 1) for all the graphs within the time limit of 300 000 moves, but needs more moves to find a 
solution for a graph at the phase transitions (when p = 0.035) than outside of the thresholds. Note that 
the initialization procedure DSATUR alone always finds a proper 3-coloring whenever p = 0.015 and 
for the F200, 0.02 graph (AMS = 0.0 means that TC performs no move at all). DSATUR also obtains 
proper 3-colorings in some runs for p ∈ {0.02, 0.025} in each class. 
 

At n = 500 (Tables 4–6), while more computational effort (AMS) is sometimes needed by TC, the 
problem is still easy for TC outside of τg (SR is always 1). At τg, TC is always competitive in terms of 
SR, especially on the U graph where SR = 0.9 (see Table 4). However, the problem is here slightly 
harder than the n = 200 cases for TC. This is particularly true on the F and E graphs where the SR 
achieved by TC at τg falls, respectively, to 0.72 and 0.56 (see Tables 6 and 5). DSATUR continues to 
produce proper 3-colorings for n = 500 in each class, in all runs when p = 0.006 and sometimes for 
F500, 0.01. 
 

On large-order graphs (n = 1 000, Tables 7–9), TC finds proper 3-colorings in all the 25 runs for 
each class whenever p is outside of τh. In these cases, mean computing times are still short. At τh, TC 
succeeds in all runs, but only on U and E graphs, see Tables 7–8 respectively. Indeed, it achieves SR = 
0.04 for the F instance (Table 9). Here again, the DSATUR algorithm directly identifies proper 3-
colorings in all runs whenever p = 0.002 and for E1 000, 0.004 and F1 000, 0.004, and in some runs for 
U1 000, 0.004. 
 

Now, we turn our attention to the performance of the reference algorithm SAW. At n = 200, SAW 
obtained interesting SR values on U and E graphs, see Tables 1–2 where SR is always 1 except when 
p = 0.035 (SR ≈ 0.9 and SR ≈ 0.85, respectively). For F graphs (Table 3), while SAW still verifies 
SR = 1 outside of τ, it achieves a lower SR around τ: SR ≈ 0.65 for p = 0.04 and SR ≈ 0.37 when p = 
0.035. This confirms the well known fact that F graphs may be harder than U and E instances, even 
on small-order graphs. For medium-order graphs (see Tables 4–6), the SR of SAW is always 1 outside 
of τg except on F500, 0.022 (SR ≈ 0:94) and F500, 0.018 (SR ≈ 0.54). SAW starts to have (great) difficulties 
in finding proper 3-colorings at τg when n = 500. Indeed, SR ≈ 0.1 on the U graph and SR ≈ 0.08 for 
the F instance. Furthermore, it seems to fail on the E instance (SR ≈ 0). At n = 1 000 (Tables 7–9), 
SAW always finds proper 3-colorings whenever p is outside of τh except on two E graphs (SR ≈ 0.96 
for p ∈ {0.006, 0.01}) and two F graphs (SR ≈ 0.88 for p = 0.012 and SR ≈ 0.48 for p = 0.01). SAW 
dramatically fails at τh: SR ≈ 0.04 for the U instance and SAW seems to never solve E and F graphs 
(SR ≈ 0). Consequently, one can conclude that TC reaches always the same or higher success rate than 
SAW on all the graphs. 
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Table 1. Small-order U graphs (n = 200): Influence of the edge probability p (100 runs). 

 

Table 2. Small-order E graphs (n = 200): Influence of the edge probability p (100 runs). 

 

Table 3. Small-order F graphs (n = 200): Influence of the edge probability p (100 runs). 
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Table 4. Medium-order U graphs (n = 500): Influence of the edge probability p (50 runs). 

 

Table 5. Medium-order E graphs (n = 500): Influence of the edge probability p (50 runs). 

 

Table 6. Medium-order F graphs (n = 500): Influence of the edge probability p (50 runs). 
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Table 7. Large-order U graphs (n = 1 000): Influence of the edge probability p (25 runs). 

 

Table 8. Large-order E graphs (n = 1 000): Influence of the edge probability p (25 runs). 

 

Table 9. Large-order F graphs (n = 1 000): Influence of the edge probability p (25 runs). 
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4.2. Deeper experiments around the phase transitions 

Tables 1–9 disclose that 3-COL is typically harder at τh than at τc, τe, τg, or τw, i.e. that τh may be more 
effective at identifying the hardest instances. To try to verify this observation, we report deeper 
experiments with TC in Tables 10–18 for more detailed p values around τ. Note that this section 
include 21 new graphs not considered in Sect. 4.1 (they appear in italic typeface). 

 
Small-order graphs (n = 200) are still easy, even at τ, see Tables 10–12. Indeed, SR is always 1 

except on F200, 0.0375 where SR = 0.82. Furthermore, mean computing time of TC is always smaller 
than a second. Medium-order graphs (n = 500, Tables 13–15) also seem to be quite easy for TC, even 
at τ. Indeed, SR is always 1 except on U500, 0.014 (0.9), E500, 0.014 (0.56), F500, 0.014 (0.72), and F500, 0.016 

(0.64). Some large-order graphs (n = 1 000, Tables 16–18) are especially difficult for TC within the 
time limit of 300 000 moves. This is particularly true at τg for all the instances (since SR ≤ 0.08) and 
outside of τg for one F graph (SR = 0.04 when p = 0.008). Furthermore, the difficulty also holds 
outside of τ in one case, when p = 0.009 for the F instance (SR = 0.48). 

Table 10. Small-order U graphs (n = 200): Deeper experiments with TC around τ (100 runs, 300 000 moves). 

 

Table 11. Small-order E graphs (n = 200): Deeper experiments with TC around τ (100 runs, 300 000 moves). 

 

Table 12. Small-order F graphs (n = 200): Deeper experiments with TC around τ (100 runs, 300 000 moves). 

 

Table 13. Medium-order U graphs (n = 500): Deeper experiments with TC around τ (50 runs, 300 000 moves). 
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Table 14. Medium-order E graphs (n = 500): Deeper experiments with TC around τ (50 runs, 300 000 moves). 

 

Table 15. Medium-order F graphs (n = 500): Deeper experiments with TC around τ (50 runs, 300 000 moves). 

 

Table 16. Large-order U graphs (n = 1 000): Deeper experiments with TC around τ (25 runs, 300 000 moves). 

 

Table 17. Large-order E graphs (n = 1 000): Deeper experiments with TC around τ (25 runs, 300 000 moves). 

 

Table 18. Large-order F graphs (n = 1 000): Deeper experiments with TC around τ (25 runs, 300 000 moves). 

 
 
Table 19 recalls the most effective τ measure from Tables 10–18 depending on n and the class of 

graphs. The last three columns (respectively lines) also propose a ranking of τc, τe, τg, τh, and τw for a 
particular n value (respectively for a particular graph class). For instance, τh is classified as “Best” 
when n = 200 since “h” appears more than the other thresholds on the “n = 200” line. Similarly, τc, τe, 
and τw are categorized as “Worst” for n = 200 since they are missing on the “n = 200” line. 

 
From Table 19, one can observe that τh is (almost) always the most effective τ measure whatever 

the value of n or the graph class. Indeed, if we define the overall score Σ (for all n values and all 
graphs) of a τ measure as the number of times it appears in the inner table (intersection of lines 3–5 
and columns U–F), we obtain Σh > Σg > Σc > Σe, w (since 8 > 6 > 3 > 2). One can then establish the 
following overall τ ranking: τh >Σ τg >Σ τc >Σ τe, w, where “>Σ” means “more effective than”. 
Consequently, we will mainly use τh as the phase transition threshold in the rest of the paper. 
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Table 19. Which τ measure is the best to identify hard 3-COL instances? 

 

4.3. Influence of the problem size n on the problem difficulty 

The scalability of TC, i.e. how its performance changes with growing problem size, can be observed 
in Tables 20–24 (27 new instances), on graphs respectively outside of τh (within 500 000 moves for 
TC) and around τh (1 000 000 moves), for various n values in [250, 1 500] (see also Sect. 4.5, where 
we use much larger graph with n up to 11 000 to test the limit of TC). 
 

Tables 20–21 show that graphs of these sizes outside of τh are really easy for TC since SR is always 
1. Around τh (Tables 22–24), the U and E graphs are still easy for TC (SR = 1) but the F instances 
become harder when n ≥ 1 000 (SR ≤ 0.04). 

Table 20. E graphs: Influence of the problem size outside of τh (p = 10/n, 50 runs). 

 

Table 21. U and F graphs: Influence of the problem size on TC outside of τh (p = 10/n, 50 runs, 500 000 moves). 

 

Table 22. E graphs: Influence of the problem size around τh (p = 8/n, 25 runs). 
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Table 23. U graphs: Influence of the problem size on TC around τh (p = 8/n, 25 runs, 1 000 000 moves). 

 

Table 24. F graphs: Influence of the problem size on TC around τh (p = 8/n, 25 runs, 1 000 000 moves). 

 
 
SAW was checked for scalability only on E graphs in (Eiben et al., 1998). While it reached good 

SR values outside of τh (see Table 20), its performance dramatically falls around τh when n ≥ 1 000 
(Table 22). 

4.4. Impact of longer runs on the solution performance 

We just observed that, in some or all runs, TC fails to find a proper 3-coloring for some graphs within 
300 000 moves (see Tables 12–18 in Sect. 4.2) or 1 000 000 moves (Table 24 in Sect. 4.3). We study 
here the effect of giving more search time to TC, i.e. if longer runs can increase its success rates for 
solving these instances. So, we first extend the maximum number of moves per run to 1 000 000 for 
graphs in Sect. 4.2 and rerun TC whenever SR < 1 for TC in Tables 12–18. In Table 25, SRs again lists 
the SR achieved by TC in Tables 12–18 (short runs with 300 000 moves). Similarly, SRl , AMSl , and 
Tl are for 25 long runs (i.e. within 1 000 000 moves). 

Table 25. Long TC runs on the hardest instances from Tables 12–18 where SR < 1 (25 runs, 1 000 000 moves). 

 
 

Table 25 confirms that small and medium-order graphs (n ≤ 500) are easily solved now by TC, 
even around τh (SRl ≥ 0.96). Significant improvements can also be observed on large-order U and E 
graphs (n = 1 000). Nevertheless, the U instance is still quite challenging (SRl = 0.28). The large-order 
F graphs remain difficult to color, even if some improvements are sometimes observed. Indeed, no 
improvement at all was possible when p = 0.008 (SRl = SRs). 
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Note that Eiben et al. (1998) reported one similar experiment using only one graph (E1 000, 0:008): 
The SR of SAW increased from 0 within 300 000 evaluations to 0.44 within 1 000 000 evaluations 
(AES = 407 283)3. 

 
Since TC still fails to reach SR = 1 within 1 000 000 moves for 10 instances (4 in Table 24 and 7 in 

Table 25, but F1 000, 0.008 is considered in both tables), we remove this limit and allow TC to run until it 
finds a proper 3-coloring. Results are summarized in Tables 26–274. “MAXINT” entries in Table 27 
indicate values larger than the maximal integer authorized by the system (i.e. 4 294 967 295). In these 
cases, T∝ indicates the minimum time needed to reach a proper 3-coloring. 

Table 26. Achieving SR = 1 with TC on the hardest instances from Table 25 where SRl <1 (5 runs, without time 
limit). 

 

Table 27. Achieving SR = 1 with TC around τh (p = 8/n) on the hardest F instances from Table 24 where SRl < 1 
(5 runs, without time limit). 

 
 

Two main observations can be made from Tables 26–27. First, all graphs are quite easy for TC 
whenever p ≠ 8/n, see Table 26 where AMS∝ ≤ 2 904 052 in this case. Second, only the large-order F 
instances constitute a real challenge for TC whenever p = 8/n, see Table 27 where AMS∝ ≥ 
298 129 024 for n ≥ 1 000. 

4.5. How far can we go with TC? 

The scalability of TC was studied in Sect. 4.3 for graphs with up to 1 500 vertices (see also Sect. 4.4 
for longer runs, with or without time limit), as in (Eiben et al., 1998) for SAW. In this section, we 
report additional results for TC in Tables 28–36 for some n values in [2 000, 11 000]5 around and 
outside of the threshold τh to try to determine the limits of TC (95 new graphs). 

                                                 
3 However, note that “0.44” is contradictory with Fig. 14 in (Eiben et al., 1998). Indeed, the plot rather suggests 
0.16 as already indicated in Table 22. 
4 For runs without time limit, we only report (mean) values based on 5 executions since no significant 
differences were observed (on easy instances) with a larger number of runs. 
5 The graph generator employed to build the graphs is restricted to n ≤ 5 000. So, we just modified two constants 
of the generator to generate instances with n > 5 000. 
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Tables 28–30 show computational results outside of the phase transition with a time limit of 
500 000 moves. All U and E instances, and F graphs where n ≤ 2 500, are really easy for TC (since 
SR = 1 in this cases). Note that TC also performs well for F3 000, 10/n since SR = 0.68. The problem 
becomes harder only on F instances from n = 3 500 since the best SR achieved by TC when n ≥ 3 500 
falls to 0.30. So, Table 30 clearly confirms that F graphs are harder than U and E instances, even 
outside of τ. 

Table 28. U graphs: The limits of TC outside of τh (p = 10/n, 50 runs, 500 000 moves). 

 

Table 29. E graphs: The limits of TC outside of τh (p = 10/n, 50 runs, 500 000 moves). 
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Table 30. F graphs: The limits of TC outside of τh (p = 10/n, 50 runs, 500 000 moves). 

 
 

Tables 31–32 shows results for “longer” runs, with a time limit of 1 000 000 moves (Table 31) or 
without time limit (Table 32), to achieve SR = 1 on the hardest F instances from Table 30. One 
observes that a solution is always found but, contrary to U and E instances, the computation effort 
required for 3-coloring large F graphs properly can be very high (up to more than 59 million moves in 
average). 

Table 31. Long TC runs outside of τh (p = 10/n) on the hardest F instances from Table 30 where SR < 1 (25 runs, 
1 000 000 moves). 
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Table 32. Achieving SR = 1 with TC on the hardest F instances from Table 31 where SRl < 1 (5 runs, without time 
limit). 

 
 

Tables 33–34 show computational results around the phase transition for U and E instances within 
a time limit of 1 000 000 moves. Note that no result is reported here (i.e. around τh) for the F graphs 
since, as already showed in Table 24 (Sect. 4.3), TC cannot solve such instances once n ≥ 1 250 
within the time limit of 1 000 000 moves. Indeed, Table 27 (Sect. 4.4) indicates that TC needs more 
than 4 billion moves (about 126 hours) to solve F1500, 8/n. This seems to indicate that, for F graphs 
around τh, F1500, 8/n would be the largest graph that can be colored by TC. 

Table 33. U graphs: The limits of TC around τh (p = 8/n, 25 runs, 1 000 000 moves). 
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Table 34. E graphs: The limits of TC around τh (p = 8/n, 25 runs, 1 000 000 moves). 

 
 
According to Table 33, TC still always solves easily U graphs around τh up to n = 3 000 since SR = 

1 in these cases. Furthermore, TC also performs quite well on larger U instances since SR ≥ 0.52 for n 
up to 5 500. E graphs (see Table 34) start here to be a little bit harder than U instances since TC never 
reached SR = 1 but it performs well up to n = 5 500 (SR ≥ 0.56 except for E5 000, 8/n). The performance 
of TC falls below 0.5 only for the largest graphs (n ≥ 6 000 and for E5 000, 8/n). 

Table 35. Achieving SR = 1 with TC around τh (p = 8/n) on the hardest U instances from Table 33 (5 runs, without 
time limit). 
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Table 36. Achieving SR = 1 with TC around τh (p = 8/n) on the hardest E instances from Table 34 (5 runs, without 
time limit). 

 
 
Tables 35–36 show results for runs without time limit on the graphs from Tables 33–34 where 

SR < 1. One observes that a solution is always found for each run of TC, even for the largest instances 
with 11 000 vertices. This indicates that TC is probably able to color U and E graphs with much 
larger n, even around the phase transition. 

5. CONCLUSIONS 
We present an experimental investigation of a simple tabu search algorithm for coloring random 3-
colorable graphs, studying three well-known classes of graphs (Uniform, Equipartite, and Flat) 
outside of or around the phase transition thresholds. The main findings of this study can be 
summarized as follows. 
 
Outside of the phase transition thresholds 
The simple tabu search algorithm can color any graph (U , E , F) with 200 ≤ n ≤ 11 000 vertices at 
each run. Moreover, as already observed in other studies, F graphs are more difficult to color than U 
and E graphs. More precisely: 
 
• For the U and E classes, any graph with up to 11 000 vertices can very easily be colored within 

500 000 moves (less than 30 seconds in average). This suggests that TC is probably able to color 
much larger (n >> 11000) U and E graphs within reasonable time. 

 
• For the F class, a solution can always be found for graphs with n ≤ 3 000 in average within 

1 million moves (less than 60 seconds). Larger graphs with 3 500 ≤ n ≤ 11 000 can also always be 
colored if more computing time is allowed. Typically this can be achieved in average with 60 
millions of moves (about 1.5 hours). 
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Around the phase transition thresholds 
The simple tabu search algorithm can color any U and E graph with 200 ≤ n ≤ 11 000 vertices at each 
run. E graphs are a little more difficult to color than U graphs. It is very difficult to color F graphs 
with more than 1 500 vertices. More precisely: 
 
• For the U and E classes, any graph with up to 11 000 vertices can be colored in average within 

5 million moves (less than 5 minutes). This suggests that TC is probably able to color still larger 
(n >> 11 000) U and E graphs within reasonable time. 

 
• For the F class, with a time limit of 1 million moves (a few seconds), a proper 3-coloring can 

always be found for graphs with up to 500 vertices, a solution can occasionally be found for 
graphs with 500 < n ≤ 1 000. F graphs with up to 1 500 vertices can also always be colored if no 
time limit is imposed. However, this may require up to more than 4 billion moves (about 126 
hours). This suggests that F graphs larger than 1 500 vertices around the phase transition 
thresholds constitute a real challenge for TC, but very probably for many (k-)coloring algorithms. 

 
Phase transition thresholds 
Finally, concerning the different phase transition thresholds reported in the literature, the experimental 
results coincide globally well with what is predicted by these thresholds as to the relative hardness of 
a given graph. Nevertheless, it is observed that the threshold τh proposed in (Eiben, van der Hauw, & 
van Hemert, 1998) is better suited to locate the phase transitions compared with other τ measures. To 
be more precise, the lower bound of τh (7/n) seems more adequate for U and E instances while the 
whole interval (7/n ≤ p ≤ 8/n) remains valid for (sufficiently large) F graphs. Moreover, a ranking 
among these thresholds is proposed based on the computational observations in Sect. 4.2. 
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